
Notes on the Derivation of Least Squares Policy

Iteration

• “LSPI is a model-free, off-policy method which can use efficiently (and

reuse in each iteration) sample experiences collected in any manner.”

The state-action value function Qπ(s, a) of any policy π, including a ran-

domized policy, can be found by solving the Bellman equations:

Qπ(s, a) = R(s, a) + γ
∑
s′∈S
P(s, a, s′)

∑
a′∈A

π(a′; s′)Qπ(s′, a′).

π(a; s) is the probability that policy π chooses action a in state s. We can write

this in matrix form:

Qπ = R+ γPΠπQ
π.

• Qπ and R are vectors of size |S| |A|.

• P is a stochastic matrix of size |S| |A| × S where

P
(
(s, a), s′

)
= P(s, a, s′).

• Ππ is a stochastic matrix of size S × |S| |A| that describes π:

Ππ

(
s′, (s′, a′)

)
= π(a′; s′)

Then we can find Qπ by solving

(I− γPΠπ)Qπ = R.

We can also think of this as a fixed point of the Bellman operator Tπ:

(TπQ)(s, a) = R(s, a) + γ
∑
s′∈S
P(s, a, s′)

∑
a′∈A

π(a′; s′)Q(s′, a′).

Example

Recall Puterman’s favorite 2-state Markov chain on Page 34 of Markov Decision

Processes. Two states, s1 and s2, and two actions, a1 and a2. Then:

Qπ = [Qπ(s1, a1), Qπ(s1, a2), Qπ(s2, a1), Qπ(s2, a2)]
ᵀ

1

R = [5, 10, −1, −∞]
ᵀ
,

and

P =



s1 s2

(s1, a1) .5 .5

(s1, a2) 0 1

(s2, a1) 0 1

(s2, a2) 0 1


We construct the following policy:

Ππ =

((s1, a1) (s1, a2) (s2, a1) (s2, a2)

s1 .5 .5 0 0

s2 0 0 1 0

)
.

This results in

I− γPΠπ =


1− 0.25γ −0.25γ −0.5γ 0.

0. 1 −γ 0.

0. 0. 1− γ 0.

0. 0. −γ 1


and we can solve (I− γPΠπ)Qπ = R for any value of γ to obtain Qπ.

Linear Architecture

We now consider approximating Qπ by a Q̂π, a linear combination of basis

functions. Suppose we have φj : S × A → R for j = 1, 2, . . . , k. Define φ(s, a),

column vector of size k, and

φ(s, a) =

 φ1(s,a)
···

φ1(s,a)
···

φk(s,a)

 .

Define Φ is a (|S| |A| × k) matrix of the form

Φ =


φ(s1, a1)ᵀ

. . .

φ(s, a)ᵀ

. . .

φ(s|S|, a|A|)
ᵀ

 .

2

If wπj is the weight for each function, we can write

Q̂π = Φwπ.

Least-Squares Fixed-Point Approximation

Recall that the Q-values of a policy π are a fixed point of the Bellman operator:

TπQ
π = Qπ. We could approximate the value function by finding a fixed point

in the space of the linear approximations:

TπQ̂
π = Q̂π.

However, this approximation space is not guaranteed to contain a fixed point.

Recall that if M is an r-dimensional subspace of Rn, Mn×r is a basis for

M, and

PM = M(MᵀM)−1Mᵀ,

then PM is the unique orthogonal projector onto M. That is, for any v =

m+ n ∈ Rn, where m ∈M and n ∈M⊥, PMv = m.

Also, for vector b ∈ Rn,

min
m∈M

‖b−m‖2 = ‖b−PMb‖2 .

That is, the vector in M closest to b is the projection of b onto M, PMb.

We might hope to find a pseudo-fixed point of the Bellman operator on an

approximation of the value function. Find the weights for a value function ap-

proximation Q̂π so that if we apply the Bellman operator (which may be outside

the approximation space), then project this into the approximation space, we

get the original approximation function. That is, we want weights wπ so that

Q̂π = Φ(ΦᵀΦ)−1Φᵀ(TπQ̂
π)

= Φ(ΦᵀΦ)−1Φᵀ(R+ γPΠπQ̂
π). (1)

In effect, the weights make the Bellman operator perpendicular to the approxi-

mation space.

3

We can manipulate (1) into solving a linear system for the weights:

Φ(ΦᵀΦ)−1Φᵀ(R+ γPΠπQ̂
π) = Q̂π

Φ(ΦᵀΦ)−1Φᵀ(R+ γPΠπΦwπ) = Φwπ

Φ(ΦᵀΦ)−1Φᵀ(R+ γPΠπΦwπ)−Φwπ = 0

Φ
(
(ΦᵀΦ)−1Φᵀ(R+ γPΠπΦwπ)− wπ

)
= 0

Because Φ has linearly independent columns:

(ΦᵀΦ)−1Φᵀ(R+ γPΠπΦwπ)− wπ = 0

(ΦᵀΦ)−1Φᵀ(R+ γPΠπΦwπ) = wπ

Φᵀ(R+ γPΠπΦwπ) = (ΦᵀΦ)wπ

ΦᵀR+ Φᵀ(γPΠπΦwπ)− (ΦᵀΦ)wπ = 0

Φᵀ(γPΠπΦwπ −Φ)wπ = −ΦᵀR

Φᵀ (Φ− γPΠπΦ)︸ ︷︷ ︸
(k×k)

wπ = ΦᵀR︸ ︷︷ ︸
(k×1)

Thus for a policy matrix Ππ, we can find the least-squares weights minimiz-

ing the L2 distance between Q̂ and the projection of TπQ̂ onto the Φ plane:

wπ = (Φᵀ (Φ− γPΠπΦ))
−1

ΦᵀR,

assuming the inverse exists. Koller and Parr (2000) showed this inverse exists

for all but finitely many values of γ. The proof follows from the determinant of

Φᵀ (Φ− γPΠπΦ) being a polynomial of γ, and the polynomial only having a

finite number of roots.

We can also use the |S| |A|×|S| |A| diagonal matrix ∆µ weight the projection

matrix according to µ(s, a):

wπ = (Φᵀ∆µ (Φ− γPΠπΦ))
−1

Φᵀ∆µR.

This is analogous to weighted regressions. Letting A = Φᵀ∆µ (Φ− γPΠπΦ)

and b = Φᵀ∆µR, we can solve wᵀ by solving k × k linear system:

Awπ = b.

If A and b were known, this linear system would be tractable for a reasonable

4

number of features; because, however, P and R are likely either unknown or

too large, A and b cannot be directly computed.

LSTDQ

We can leave the matrix notation to get

A = Φᵀ∆µ (Φ− γPΠπΦ)

=
∑
s∈S

∑
a∈A

φ(s, a)µ(s, a)

(
φ(s, a)− γ

∑
s′∈S
P(s, a, s′)φ(s′, π(s′))

)ᵀ

=
∑
s∈S

∑
a∈A

µ(s, a)
∑
s′∈S
P(s, a, s′)

[
φ(s, a)

(
φ(s, a)− γφ

(
s′, π (s′)

))ᵀ]

and

b = Φᵀ∆µR

=
∑
s∈S

∑
a∈A

φ(s, a)µ(s, a)
∑
s′∈S
P(s, a, s′)R(s, a, s′)

=
∑
s∈S

∑
a∈A

µ(s, a)
∑
s′∈S
P(s, a, s′) [φ(s, a)R(s, a, s′)]

The matrix A is the sum of many rank one (outer product) matrices of the form

φ(s, a)
(
φ(s, a)− γφ

(
s′, π (s′)

))ᵀ
and b the sum of vectors of the form

φ(s, a)R(s, a, s′)

where the sum over every (s, a, s′) pair and weighted by µ(s, a) and P(s, a, s′).

We can approximate A and b by sampling terms from this summation. “For

unbiased sampling, s and a must be drawn jointly from µ, and s′ must be drawn

from P(s, a, s′).” If a finite set of samples

D = {(si, ai, ri, s′i) | i = 1, 2, . . . , L}

5

is sampled according to µD, A and b can be approximated according by

Ã =
1

L

L∑
i=1

[
φ(si, ai)

(
φ(si, ai)− γφ

(
s′i, π (s′i)

))ᵀ]
b̃ =

1

L

L∑
i=1

[φ(si, ai)ri] .

This method for approximating w̃π is what Lagoudakis and Parr called

LSTDQ. They also use the Sherman-Morrison formula to provide an algorithm

that maintains the inverse of A at each step which would be useful for policy

improvement.

LSPI

Given some policy and basis functions, we compute the approximate policy

Q̂(s, a; w) =

k∑
i=1

φi(s, a)wi = φ(s, a)ᵀw

by computing the weights according to LSTDQ from a set of samples D. We

can then construct a greedy policy π from this by:

π(s) = arg max
a∈A

Q̂(s, a).

From policy π, we can repeat the same process reusing the same samples to

compute w each time. We repeat this process until the policy (approximately)

stops changing. This is least squares policy iteration.

6

